Nasional cek6

by Hidayaturrahmah Rahmah

Submission date: 19-Feb-2020 11:25AM (UTC+0700)

Submission ID: 1259967608

File name: 6._Jurnal_Nasional_BIOSCIENTIAE_Profil_Darah.pdf (211.16K)

Word count: 3471

Character count: 20507

Volume 12, Nomor 1, Januari 2015, Halaman 78 - 89

http:/fmipa.unlam.ac.id/bioscientiae

PROFIL DARAH IKAN TIMPAKUL (Periophthalmodon schlosseri) DARI MUARA SUNGAI BARITO KALIMANTAN SELATAN

Andi R.R.R. Lavabetha[⊠], <mark>Hidayaturrahmah, Muhamat, Heri Budi</mark> S.

Program Studi Biologi Fakultas MIPA Universitas Lambung Mangkurat,
JI A. Yani Km. 36 Banjarbaru, Kalimantan Selatan 70714
E-mail: springharuism@gmail.com

ABSTRACT

This research was done to explain about blood profile of mudskipper (*Periophthalmodon schlosseri*) by calculation erythrocytes count, hemoglobin, haematocrit, calculation of index erythrocyte which consist of calculation of *mean corpuscular volume* (MCV), *mean cell hemoglobin* (MCH) and *mean cell hemoglobin concentration* (MCHC), also calculation leukocytes count. Sampling used endangered animal catching method with line transect method. This research was used *P. schlosseri* with length about 25,4 – 28. Samples were taken from Barito River estuary at intertidal zone of Bahagia River, Tanipah village, Aluh-Aluh South Kalimantan. Blood test of *P. shlosseri* based on Hematology method. Results showed that erythrocyte count was 3,36±0,1x10⁶ cell/µL; hemoglobin value 12,38±0,56 gr%; hematocrit 41,53±0,60 %; MCV 123,78±3,94 µm³; MCH 36,88±1,82 pg/cell; MCHC 29,80±1,18 g/dL and leukocyte count was 222,62±5,09 cell/µL. Blood profile of *P. schlosseri* from Barito River Estuary South Kalimantan is the result of environment adaptation and amphibious behavior (air-breathing).

Keywords: blood, erythrocyte, leukocyte, mudskipper

PENDAHULUAN

Profil darah sangat berperan dalam fisiologi metabolisme dan aktifitas tubuh hewan. Darah merupakan cairan tubuh yang mengalir ke dalam jantung melalui pembuluh darah. Darah merupakan alat pengangkut bermacam-macam substansi yaitu oksigen dan karbon dioksida, nutrisi, substansi yang berperan dalam ekskresi, hormon, selain itu mengatur keseimbangan cairan, mengatur keseimbangan asambasa pH darah, mencegah pendarahan, alat pertahanan tubuh dan mengatur suhu tubuh (Wulangi, 1998).

Ikan timpakul atau ikan gelodok (Periophthalmodon schlosseri) merupakan jenis ikan yang tedapat di daerah pasang surut muara Sungai Barito. P. schlosseri memiliki habitat dan cara hidup yang khas (Hidayaturrahmah dan Muhamat, 2013). P. schlosseri beradaptasi seperti amphibi. Meskipun tergolong ikan, tetapi P. schlosseri cenderung menghabiskan waktu yang lebih banyak di luar air dan aktif ketika keluar dari air. *P. schlosseri* mampu melakukan pernafasan udara (*airbreathing*) pada saat di daratan (Ravi&Rajagopal, 2007).

Kajian mengenai ekologi, anatomi dan fisiologi dari P. schlosseri masih sedikit, terutama informasi dan data mengenai profil fisiologi darah dari ikan ini masih belum pernah dilaporkan sebelumnya. Berdasarkan hal tersebut maka penelitian ini difokuskan berupa profil darah yaitu jumlah eritrosit, kadar hemoglobin, nilai hematokrit, nilai MCV(Mean Corpuscular Volume), nilai MCH (Mean Cell Hemoglobin), nilai MCHC (Mean Cell Hemoglobin Concentration) dan jumlah leukosit P. schlosser idari muara Sungai Barito Kalimantan Selatan.

Keunikan cara beradaptasi *P. schlosseri* yaitu mampu melakukan pernafasan udara (*air-breathing*) yang berbeda dengan ikan akuatik dari kelompok *Osteichtyes* lainnya dan memiliki kemiripan cara hidup seperti hewan golongan amphibi maka perlu dikaji lebih lanjut mengenai profil darah pada *P. schlosseri* ini.

METODE

Alat dan Bahan

Alat-alat yang digunakan adalah alat pancing, komparator pH, jangka sorong, termometer, refraktometer, DO meter, kamera, neraca analitik digital, baki, syringe 3 ml, tube, hemositometer, mikroskop, hemoglobinmeter sahli, tube mikrohematokrit kapiler, mikrohematokrit sentrifus, microhaematocrit reader, dan alat hitung (counter).

Bahan yang digunakan adalah *P. schlosseri* yang diambil sampel darahnya, umpan pancing berupa udang atau anak katak, larutan EDTA, larutan hayem, larutan turk, HCl 0,1 N dan lilin sumbat tube mikrohematokrit kapiler.

Prosedur Kerja

Pengambilan sampel uji

Sampel P. sclosseri diambil dari muara Sungai Barito wilayah pasang surut tepi Sungai Bahagia, Desa Aluh-Aluh, Tanipah, Kalimantan Selatan dengan metode penangkapan hewan langka yaitu dengan metode Line Transek. P. schlosseri dipancing dengan umpan anak katak atau udang kecil. P. schlosseri yang tertangkap dibawa ke laboratorium untuk diaklimatisasi di dalam akuarium. P.

schlosseri diukur panjang tubuh keseluruhan menggunakan jangka sorong, ditimbang berat tubuhnya kemudian diambil darahnya.

Pengujian sampel air

Parameter fisika kimia air yang diuji pada penelitian ini meliputi parameter suhu, salinitas, derajat keasaman perairan (pH), dan kandungan oksigen dalam perairan (DO/Dissolved Oxygen). Pengujian sampel air untuk parameter suhu, salinitas, dan pH dilakukan langsung lokasi pengambilan sampel. Pengukuran kandungan oksigen dalam perairan (DO) dilakukan di Laboratorium Dasar Biologi bagian Fisiologi FMIPA Unlam Banjarbaru.

Pengambilan darah

Darah *P. schlosseri* diambil dari vena caudalis di antara sisik ikan dekat ekor menggunakan *syringe* 3 mL. *Syringe* sebelumnya dibasahi dengan sedikit larutan EDTA (*Ethylene Diamine Tetra Acid*). Darah kemudian dimasukkan ke dalam tube yang telah diisi dua tetes

larutan EDTA secara perlahan (Erika, 2008). Darah yang telah diambil menjadi stok darah.

Perhitungan sel darah

Eritrosit dan Leukosit

Pengamatan sel darah meggunakan metode hematositmeter.Perhitungan kadar hemoglobin menggunakan metode sahli.

Pemeriksaan nilai hematokrit, perhitungan MCV (Mean Corpusculla Volume), MCH (Mean Cell Hemoglobin) dan MCHC (Mean Cell Hemoglobin Concentration)

Pemeriksaan nilai hematokrit menggunakan *microhematocrit centrifuge* dengan kecepatan 11.000 rpm. Hasil dibaca dengan menggunakan *hematocrit reader* dan hasilnya dinyatakan dalam persen (%) (Pflanzer, 2007).

Perhitungan MCV (Mean Corpusculla Volume), MCH (Mean Cell Hemoglobin) dan MCHC (Mean Cell Hemoglobin Concentration) menggunakan rumus yang telah disebutkan oleh Dacie & Lawies (1991):

$$\begin{split} &\text{MCV } (\mu m^3) = \frac{nilai \ hematokrit}{jumlah \ eritrosit} x 10 \\ &\text{MCH } (pg) = \frac{nilai \ hemoglobin}{jumlah \ eritrosit} \ x 10 \ \text{MCHC } (g/dL) = \frac{nilai \ hemoglobin}{nilai \ hematokrit} \ x 100 \end{split}$$

HASIL DAN PEMBAHASAN

Tabel 1. Profil darah ikan timpakul (*P. schlosseri*)

Parameter	Rata-rata ± Simpangan Baku		
Eritrosit (x10 ⁶ sel/μL)	3,36±0,1		
Hemoglobin (gr%)	$12,38\pm0,56$		
Hematokrit (%)	41,53±0,60		
MCV (μm³)	$123,78\pm3,94$		
MCH (pg/sel)	$36,88\pm1,82$		
MCHC (g/dL)	$29,80\pm1,18$		
Leukosit (x10 ³ sel/μL)	222,62±5,09		

Tabel 2. Hasil Pengujian Sampel Air

Parameter	Satuan	Hasil Uji	Ambang Batas
Suhu	°C	29 – 34	$25 - 30^{*1}$
Salinitas	(°/oo)	10-21	$5 - 30^{*2}$
Keasaman (pH)	-	7-8	$6,5-8,6^{*3}$
Dissolved Oxygen (DO)	mg/L	0,37-3,77	2-3*4

Keterangan: *1 Yusdiana, 1996; *2 Nybakken, 1992; *3 Register & Ronald, 2002 *4 Diaz & Breitburg, 2009

Hubungan profil darah *P. schlosseri* dengan kualitas lingkungan air Eritrosit

Rataan jumlah eritrosit P. schlosseri pada penelitian ini (tabel 1) adalah 3,36±0,1x106 sel/μL. Nilai ini masih berada dalam kisaran jumlah eritrosit pada ikan secara umum yaitu mencapai 4x106 sel/mm3 (Moyle & Cech, 1988). Perbedaan parameter hematologi pada ikan mencerminkan kondisi ekologi pada habitatnya dan sebagai adaptasi fisiologi pada cara mereka. Jumlah eritrosit berbeda-beda sesuai dengan adaptasi kondisi lingkungan yang bervariasi (Ramaswamy & Reddy, 1978; Moyle & Cech, 1982). Jumlah eritrosit

dipengaruhi oleh kondisi stress, kondisi lingkungan, dan kebutuhan oksigen (Fujaya, 2004).

Peningkatan kadar salinitas air diikuti dengan adanya peningkatan yang signifikan pada jumlah eritrosit. Adanya produksi eritrosit dapat terjadi karena adanya degenerasi yang intensif dari eritrosit tua yang tidak dapat beradaptasi terhadap perubahan konsentrasi ion di dalam tubuh ikan ketika berada dalam lingkungan dengan kadar salinitas yang tinggi (Izergina et.al., 2007)

Menurut Baghdadi *et.al.*, (1998) suhu yang tinggi dapat meningkatkan jumlah eritrosit. Hasil pengujian

sampel air lingkungan tempat hidup P. schlosseri memiliki suhu berkisar antara 29 - 34°C yang melebihi ambang batas dari suhu normal pada biota budidaya. Tingginya suhu lingkungan yang diiringi dengan peningkatan jumlah eritrosit kemungkinan disebabkan dengan tingginya evaporasi oksigen dari air, meningkatnya sehingga eritrosit mengimbangi kekurangan oksigen (Fujaya, 2004).

Kadar oksigen yang rendah atau hipoksia pada lingkungan air tempat hidup P. schlosseri (tabel 2) juga diduga memiliki pengaruh terhadap jumlah eritrosit. Keadaan hipoksia kadar atau kurangnya oksigen menyebabkan oksigen tidak dapat ditranspor dengan baik ke jaringan. Jumlah eritrosit yang cenderung tinggi menjadi pendukung dalam penyerapan oksigen yang lebih banyak untuk memenuhi kebutuhan oksigen jaringan dalam rangka mempertahankan hidupnya (Fujaya, 2004).

Kadar Hemoglobin

Kadar hemoglobin *P. schlosseri* dalam penelitian ini adalah 12,38±0,56 gr%. Kadar hemoglobin dipengaruhi oleh jumlah eritrosit,

semakin tinggi jumlah eritrosit dalam darah maka semakin tinggi pula kadar hemoglobin. Kadar hemoglobin pada ikan akuatik umumnya 5 - 10g% (Hrubec & Smith, 2000). Menurut Kasim (2010),kadar oksigen (dissolved oxygen) yang rendah menstimulasi pembentukan sel-sel darah merah baru ke dalam darah dan menyebabkan peningkatan pada kadar hemoglobin, selain itu juga terjadi peningkatan pada jumlah eritrosit dan nilai hematokrit.

Hematokrit

Rataan nilai hematokrit darah *P*. schlosseri pada penelitian ini sebesar 41,53±0,60 %. Nilai hematokrit menunjukkan perbandingan sel darah merah terhadap plasma (Meyer et.al., 1992). Nilai hematokrit pada P. schlosseri diduga meningkatkan potensi darah untuk membawa oksigen dan meningkatkan aktifitas aerobik pada tingkat sel (Fakharzadeh et.al., 2011).

MCV (Mean Corpuscular Volume)

Rataan MCV darah *P. schlosseri* sebesar 123,78±3,94 μm³ sedangkan MCV ikan akuatik pada umumnya yaitu berkisar antara 150 – 350 μm³. Hasil dari penelitian ini didapatkan MCV dari darah *P.*

schlosseri berada di bawah kisaran MCV ikan akuatik pada umumnya,

MCV merupakan volume ratarata eritrosit yang dipengaruhi oleh jumlah eritrosit dan nilai hematokrit. MCV akan tinggi apabila nilai hematokrit besar dengan jumlah eritrosit yang lebih sedikit. MCV akan rendah apabila nilai hematokrit kecil dengan jumlah eritrosit yang lebih banyak atau jika nilai hematokrit dan eritrosit yang samasama besar. Ikan dengan kebutuhan oksigen yang tinggi cenderung memiliki ukuran eritrosit yang kecil dengan MCV yang rendah dan jumlah eritrosit yang tinggi (Hrubec &Smith, 2000). Peningkatan salinitas air juga dapat menyebabkan penurunan volume eritrosit bersama dengan peningkatkan terhadap produksi eritrosit (Izergina et.al., 2007).

Rendahnya nilai MCV dari *P. schlosseri* mengindikasikan kemungkinan ukuran dari eritrosit *P. schlosseri* yang merupakan ikan *air-breather* atau memiliki kemampuan bernafas di daratan, memiliki ukuran yang lebih kecil dari ukuran standar eritrosit ikan pada umumnya. Mengenai ukuran eritrosit dari *P.*

schlosseri ini disarankan untuk diteliti lebih lanjut.

MCH (Mean Cell Hemoglobin)

MCH dipengaruhi oleh kadar hemoglobin dan jumlah eritrosit yang beredar dalam darah. MCH menyatakan banyaknya hemoglobin dalam satu sel eritrosit. Eritrosit dengan kadar hemoglobin yang tinggi akan memiliki nilai MCH yang tinggi pula. MCH dari darah P. schlosseri yang didapat dari penelitian ini adalah 36,88±1,82 pg/sel. MCH dari P. schlosseri berada dalam kisaran ratarata MCH ikan pada umumnya yaitu 30 -100 pg/sel (Hrubec & Smith, 2000).

MCHC (Mean Cell Hemoglobin Concentration)

MCHC menyatakan perbandingan konsentrasi hemoglobin dengan volume eritrosit dalam seluruh darah. MCHC *P. schlosseri* hasil penelitian ini adalah 29,80±1,18 g/dL

Nilai MCH dan MCHC lebih tinggi pada ikan yang aktif daripada ikan yang aktif (Goel *et.al.*, 1981). Menurut Frandson (1992), nilai dari MCH dan MCHC dapat digunakan dalam pemeriksaan kesehatan. MCH dan MCHC yang

lebih rendah dari nilai normal disebut dengan anemia hipokromik, MCH dan MCHC yang lebih tinggi dari nilai normal disebut dengan anemia hiperkromik.

Leukosit

Rataan jumlah leukosit pada P. schlosseri pada penelitian ini sebesar $222,62\pm5,09 \text{ x}10^3 \text{ sel/}\mu\text{L}$, sedangkan jumlah leukosit pada ikan umumnya berkisar antara 30.000 hingga 150.000 sel/μL. Hal ini dapat dikatakan bahwa jumlah leukosit dari P. schlosseri lebih tinggi dari kisaran jumlah leukosit ikan pada umumnya (Hrubec & Smith, 2000).

Menurut Bowden (2008),kenaikan salinitas dapat menyebabkan peningkatan patogen dari lingkungan menghasilkan untuk lingkungan osmotik yang lebih menguntungkan bagi patogen. Selain itu, lingkungan yang hipoksia menyebabkan ikan meningkatkan frekuensi naik ke permukaan dan melakukan pernafasan di udara (air-breathing). Perilaku airbreathing ini mengakibatkan infeksi dan menstimulasi respon kekebalan.

Hubungan profil darah *P. schlosseri* dengan cara beradaptasi seperti amphibi (*air-breather*)

P. schlosseri merupakan ikan yang memiliki kemampuan bernafas

di luar air (air-breather) atau bersifat seperti amphibi. P. schlosseri menyerap oksigen melalui membran yang kaya akan darah di bagian belakang mulut dan tenggorokannya (rongga bucchoparyngeal). Selain itu penyerapan oksigen dari P. schlosseri juga dibantu dengan kulit yang kaya dengan darah kapiler selama kulit dalam keadaan lembab (Tan, 2010).

Eritrosit

Profil darah P. schlosseri jika dibandingkan dengan katak memiliki nilai yang lebih besar kecuali pada nilai MCHC dan jumlah leukosit. Katak memiliki jumlah eritrosit $2,69\pm0,14$ $x10^{6}$ sebesar sel/µL (Omonona dan Ekpenko, 2011) sedangkan jumlah eritrosit schlosseri dalam penelitian ini sebanyak $3,36\pm0,1\times10^6$ sel/μL. Jumlah eritrosit yang cenderung tinggi dibandingkan dengan katak pendukung diduga sebagai penyerapan oksigen yang lebih banyak pada P. schlosseri.

Hemoglobin

Kadar hemoglobin pada katak sebesar 8,96±0,38 gr% (Omonona & Ekpenko, 2011). Hal ini menunjukkan bahwa kadar hemoglobin *P. schlosseri* pada penelitian ini lebih

tinggi yaitu 12,38±0,56 gr%. Tingginya kadar hemoglobin dapat membantu dalam penyimpanan oksigen dan menjalankan fungsi penyangga darah (*blood-buffering*) pada ikan *air-breather* (Graham, 1997).

Hewan yang memiliki aktivitas metabolisme yang lebih tinggi dan ukuran tubuh yang lebih besar biasanya memerlukan oksigen dalam jumlah yang besar (Karim, 2006). Rata-rata ukuran tubuh P. schlosseri pada penelitian ini adalah 26,23 cm dengan rata-rata berat 175,24 gram, sedangkan rata-rata ukuran katak (Rana temporaria) 6 - 9 cm dengan rata-rata berat 22,7 gram (Sterry, 1997). Oleh karena itu hewan ini memerlukan cara pengangkutan oksigen yang lebih efektif, yaitu dengan bantuan hemoglobin yang dapat meningkatkan kapasitas pengangkutan oksigen (Isnaeni, 2006).

Hematorkit, MCV, MCH dan MCHC

Nilai hematokrit *P. schlosseri* sebesar 41,26±3,05%, lebih tinggi dari katak yang memiliki nilai hematokrit 27,08± 0,15% (Omonona & Ekpenko, 2011). Nilai MCV *P. schlosseri* pada penelitian ini

125,52±4,75μm³ lebih besar dari MCV katak yaitu 104,52 ± 3,09 μm³ (Omonona & Ekpenko, 2011). Pada penelitian ini nilai hematokrit dan nilai MCV dari *P. schlosseri* lebih tinggi dari katak berbanding lurus dengan jumlah eritrosit dari *P. schlosseri* yang lebih banyak dari katak.

MCH dari katak adalah 34,56 ± 1,00 pg/dL (Omonona & Ekpenko, 2011) sedangkan MCH dari P. schlosseri dari penelitian ini sebesar 37,37±1,93 pg/sel. Nilai MCH P. schlosseri lebih tinggi dari nilai MCH katak. Nilai MCHC yang tinggi mengindikasikan kadar hemoglobin yang tinggi pada setiap unit eritrosit (Robbins, 1974), namun nilai MCHC P. schlosseri masih lebih rendah daripada MCHC dari katak yang memiliki MCHC sebesar 33,10±0,14 g/dL (Omonona & Ekpenko, 2011) sedangkan nilai MCHC dari P. schlosseri sebesar 29,79±1,23 g/dL.

Leukosit

Jumlah leukosit dari ikan P. schlosseri jauh lebih sedikit dari jumlah leukosit dari katak. Menurut Omonona & Ekpenko (2011) jumlah leukosit katak sebesar $16110,26 \pm 691,41 \times 10^3 \text{ sel/}\mu\text{L}$. Jumlah dan

komposisi persen leukosit dalam sirkulasi darah sangat bervariasi. Hal ini berbeda-beda tergantung dari beberapa faktor, diantaranya adalah infeksi atau serangan penyakit

Pengujian sampel air

Suhu air lingkungan tempat hidup *P.schlosseri* berkisar antara 29 - 34°C (tabel 2.). Kisaran suhu yang bisa ditoleransi oleh biota budidaya adalah 25 - 30°C (Yusdiana, 1996). Hal ini dapat dikatakan bahwa P. schlosseri mampu bertahan pada suhu perairan yang lebih tinggi dari suhu biota budidaya. Kadar salinitas pada lingkungan air tempat hidup P. schlosseri berkisar antara 10 - 21°/oo hal ini menunjukkan P. schlosseri hidup pada wilayah payau karena kadar salinitas air payau berkisar antara 5 – 30 % Kadar salinitas pada air tawar yaitu < 0.5 - 5 per mil sedangkan kadar salinitas pada air laut adalah lebih dari 30 per mil (Nybakken, 1992). Keasaman atau kadar pH dari sampel air berkisar antara 7 - 8. Hal ini masih berada di dalam kisaran nilai pH wilayah muara yaitu 6,5 - 7,5 pada bagian yang lebih tawar dan hingga pH 8,6 pada bagian yang salinitas nya lebih tinggi (Register & Ronald, 2002). Kadar

Dissolved Oxygen (DO) atau kadar oksigen terlarut pada air sarang *P. schlosseri* berkisar pada nilai 0,37 – 3,77 mg/L. Keadaan minimal kadar oksigen untuk ikan estuari dibutuhkan kisaran antara 2 sampai dengan 3 mg/L kandungan oksigen di air (Diaz & Breitburg, 2009). Adanya kadar oksigen yang rendah menunjukkan bahwa ikan *P. schlosseri* mampu beradaptasi terhadap kondisi minim oksigen (*hypoxia*).

Pada penelitian ini, profil darah P. schlosseri cenderung tinggi namun masih berada di dalam kisaran profil darah ikan akuatik, kecuali pada nilai MCV dan jumlah leukositnya. Profil darah P. schlosseri lebih tinggi dibandingkan dengan profil darah katak sebagai hewan amphibi kecuali nilai MCHC dan jumlah leukositnya. Hal ini sebagai adaptasi fisiologi dari Ρ. schlosseri terhadap kondisi hipoksia, salinitas lingkungan air berupa air payau, suhu yang lebih tinggi dari ambang batas suhu biota budidaya serta perilaku air breathing yang dilakukan oleh P. schlosseri untuk memenuhi penyerapan oksigen sebagaimana fungsi dari darah dengan hubungannya dengan sistem respirasi yaitu sebagai pengikat dan pengangkut oksigen.

KESIMPULAN

Dari hasil penelitian dapat disimpulkan :

- 1. Profil darah timpakul (P.schlosseri) dari Muara Sungai Barito Kalimantan yaitu jumlah eritrosit sebanyak $3,36\pm0,1\times10^6$ sel/ μ L; kadar hemoglobin 12,38±0,56 gr%; nilai hematokrit 41,53±0,60 %; nilai $123,78\pm3,94 \, \mu m^3$; MCV nilai MCH 36,88±1,82 pg/sel; nilai MCHC $29,80\pm1,18$ g/dL dan leukosit sebesar jumlah $222,62\pm5,09 \times 10^3 \text{ sel/}\mu\text{L}$.
- 2. Profil darah P. schlosseri dari Muara Sungai Barito Kalimantan Selatan merupakan hasil adaptasi dari lingkungan yang memiliki salinitas air payau, suhu perairan yang lebih dari ambang batas suhu biota budidaya, kadar pH normal muara sungai, kadar oksigen terlarut dalam air yang rendah (hipoksia) dan juga cara hidupnya yang seperti amphibi (airbreather).

DAFTAR PUSTAKA

Baghdadi, H.H., M.M. El-Gharabawy, M.I. Zaky & Z.A El-Greisy. 1998. Efect of Some Environmental And Physiological Factors on The Blood Count of *Mugil capito* During The Breeding Season. *Rapp. Comm. int. Mer Médit* 35.

Bowden, TJ. 2008. Modulation of Immune System Of Fish by Their Environtment. Fish Sellfish. Immunol. 25:373-383

- Dacie, S. & S. Lewis. 1991. Practical Haematology. 7th Edn., Churchill Livingstone, London. dalam Osman, Alaa G.M and Ahmed S. A. Harabawy. 2010. Hematoxic and Genotoxic Potential of Ultraviolet-A Radiation on the African Catfish Clarias gariepinus (Burchell, 1822). Journal of Fisheries International, Egypt 5 (3): 44-45
- Diaz, R.J dan D.L Breitburg. 2009. The Hypoxic Environtment, hal 2-4. Dalam A.P Farrell & C.J Brauner (penyunting). Fish Physiology.Jilid 27. Academic Press, London
- Erika, Y. 2008. Gambaran Diferensiasi Leukosit Pada Ikan Mujair (Oreochromis mossambicus) di Daerah Ciampea Bogor. Skripsi. Fakultas Kedokteran Hewan. IPB, Bogor.
- Frandson, DR. 1992. Anatomi dan Fisiologi Ternak Edisi Ke-4. Diterjemahkan oleh Srigandono, B & Praseno K. Gadjah Mada Univesity Press, Yogyakarta.
- Fujaya, Y. 2004. Fisiologi Ikan: Dasar Pengembangan Teknik Perikanan. Rineka Cipta, Jakarta.
- Fakharzadeh, S.M.E., M. Farhangi, B.M. Amiri, M. Ahmadi & N. Maloumi. 2011. The Effect of Hydrocortisone Treatment by Bathing and Daphnia Enrichment on the Salinity Stress in Persian Sturheon Acipenser percius Juvenille. International Aquatic Research. 3: 125 133.
- Goel, K.A., A. K. Awasthi, & S.K. Tyage. 1981. A Comparative Study of a few freshwater teleosts. *Zeltschrift. Fur Tierphysiologie. Tierenburg* and *Futtermittekunde*, 46(4):202-206.
- Graham, J.B. 1997. Air-Breathing Fishes: Evolution, Diversity, and

- Adaptation. Academic Press. Massachusetts.
- Hidayaturrahmah dan Muhamat, 2013. Habitat Periphthalmodon schlosseri di Muara Sungai Barito. Diseminarkan di Seminar Regional Cinta Fauna, Banjarmasin 17 November 2013
- Hrubec, T.C. & S.A. Smith. 2000. Hematology of Fish. Dalam Feldman, B.F., J.G. Zinkl, & N.C. Jain (Penyunting). Schalm's Veterinary Hematology Fifth
- Isnaeni, W. 2006. Fisiologi Hewam. Kanisius. Yogyakarta.
- Izergina, E., I. Izergin, & Volobuev. 2007. Influence of Water Salinity the Status Physiological and Distribution of Juvenile Chum Salmon in the Estuary of the Ola River of the Northeast Coast of the Sea. North Okhotsk Pacific Anadromous Fish Commission Technical Report (7):69-71.
- Karim, M. Y.. 2006. Konsumsi Kepiting Bakau (Scylla serrata Forsskal) pada berbagai Salinitas Media. FIKIP Universitas Hasanuddin. Makassar.
- Kasim, H. M., 1983. Salinity Tolerance of Fresh Water Fishes. Indian *J. Fhsh* 30(1):46-54.
- Meyer D.J., E.H. Coles, & L. J. Rich. 1992. Veterinary Laboratory Medicine Interpretation and Diagnosis. WB Saundres Company, Philadelphia.
- Moyle, P.B. & J.J. Cech. 1988. Fish an Introduction I Ichthyology Second Edition. Prentice Hall, New Jersey.
- Nybakken, J.W. 1992. *Biologi Laut, Suatu Pendekatan Ekologi*. PT. Gramedia, Jakarta.
- Omonona, A.O. & V. Ekpenko. 2011. Haematology and Prevalence of Blood Parasites of The Common

- Frog (Rana temporaria) in the Tropical Environment. Journal of Veterinary Medicine and Animal Health 3(2):14-20
- Pflanzer, R.G. 2007. Experimental and Applied Physiology Laboratory Manual. 8th Edn. McGraw-Hill. New York.
- Ramaswamy, M & Reddy, T.G. 1978. A comparative study of haematology of three air-breathing fishes. *Proc. Indian Acad. Sci.*, 87(12):381-385.
- Ravi, V. & S. Rajagopal. 2007. Mudskippers. Centre of Advanced Study in Marine Biology Annamalai University, India.
- Register, K.M. & L.O. Ronald. 2002. Volunteer Estuary Monitoring A Methods Manual 2nd Edition Ch.11 pH and Alakalinity. The Ocean Conservacy. Washington DC.
- Robbins, S.L, R.S. Cotran & V. Kumar. 1974. *Pathologic Basis of Disease*. 5thed.
- Sterry, P. 1997. Collins Complete British Wildlife Photoguide. Harper Collins Publishers Limited. New York.
- Tan, R. 2010. Giant Mudskippers: Periophthalmodon Schlosseri. www.naturia.per.sg/buloh/verts/mudskipper.htm (diakses pada tanggal 8 Maret 2013)
- Yudistira, D. 2011. Struktur Histologi Insang Ikan Timpakul (Periophtalmodon sclilosseri) Kalimantan Selatan. Skripsi, Fakultas Matematika dan Ilmu Pengetahuan Alam. Universitas Lambung Mangkurat. Banjarbaru.
- Yusdiana, T. 1996. Pengaruh Padat Penebaran terhadap Pertumbuhan dan Kelangsungan Hidup Ikan Bandeng (Chanos chanos Forskal) yang Dipelihara dalam Jaring Apung di Laut. Skipsi, Jurusan

BIOSCIENTIAE. 2015

Budidaya Perairan. Fakultas Perikanan IPB. Bogor. Wulangi, K. 1993. *Prinsip-Prinsip Fisiologi Hewan*. Proyek Pembinaan Tenaga Kependidikan Pendidikan Tinggi. Jakarta.

Nasional cek6

ORIGINALITY REPORT

19% SIMILARITY INDEX

16%

INTERNET SOURCES

11%

PUBLICATIONS

12%

STUDENT PAPERS

MATCH ALL SOURCES (ONLY SELECTED SOURCE PRINTED)

4%

Internet Source

Exclude quotes On

Exclude bibliography On

Exclude matches

Off