Learning Devices for Biological Diversity: Examining the use of Troubleshooting to Improve Student Learning Outcomes

Aminuddin Prahata Putra¹, Huldan², Achmad Syamsu Hidayat³

¹Department of Biology Education, Universitas Lambung Mangkurat, Banjarmasin, Indonesia
²Department of Medicine Education, Universitas Lambung Mangkurat, Banjarbasin Indonesia
³Department of Fisheries Agribusiness, Universitas Lambung Mangkurat, Banjarbaru Indonesia

ABSTRACT
This research aims to describe the validity of practicality and the effectivity of learning instruments for biodiversity conservation concepts using a troubleshooting learning model to increase the student learning result of grade VII SMPN 21 Banjarmasin. The study was conducted in two stages: (1) The first phase entailed developing a device following an Assure design, and (2) The second phase involved the implementation of a learning device at a class by using the one-group pretest-posttest design. A quantitative descriptive analysis technique and qualitative descriptive evaluation were done on the data collected. The result of this research shown that a device that was developed was valid, practical, and effective. Valid can be seen from the validator judgment to RPP, LKS, teaching materials, knowledge learning result judgment instrument, attitude, psychomotor, and interpretational skills. Effectiveness of the intervention was demonstrated by increased knowledge acquisition, individual completeness, psychomotor learning result completeness.

The primary limitation of the study was the lack of time to guide the students to experiment and teach the sains skill process. However, the results of the study show that the troubleshooting model was a valid, practical, and effective method that could be used to improve the students’ learning result and train the sciences skill process. The troubleshooting model was a valid, practical, and effective method that could be used to improve the students’ learning result and train the sains skill process.

Keywords: Conservation of biodiversity; biology; learning result; learning outcomes; troubleshooting.

Correspondence:
Aminuddin Prahata Putra
Email: aminuddinpatra@ulm.ac.id
DOI: 10.5530/srp.2019.1.40
(c) Advanced Scientific Research. All rights reserved

1. INTRODUCTION
Sains education has significantly improved students’ objectivity and contributed to the realization of better academic results. The sains education is designed to promote the values of honesty, discipline, humanity, reward, caring, humility, and protecting people’s lives through the learning activities done at school (Ma-Kellams & Blascovich, 2013). Biology is one of the subjects that students learn in Junior High School (SMP) level. Students must be able to create a concept and build the abstract concept in Biology to understand it, and other students focus on memorizing ideas related to biology but fail to apply it in life (Prahata Putra, 2015). It is worth stating that sains and biology learning must be not focused only on the knowledge and understanding of the concepts (Basey, Maines, Francis, & Melbourne, 2014; Taylor & Gemmell, 2016). Instead, it should be directed more on how to make someone describe a phenomenon, draw a conclusion based on a fact, construct the new ideas, and realize how information and technology can positively impact on life of every person (Clary & Wandersee, 2013; Dieser & Bogner, 2016; Hopwood, Flowers, Seidler, & Hopwood, 2013; Trautmann, MaKinsters, & Batek, 2013). Students who master biology are sensitive to their surroundings and always use their knowledge and skills to solve problems and improve quality of life.

The results of the international Trends in International Mathematics and Science Study (TIMSS) and Programme for International Student Assessment (PISA) studies illustrate the extent to which science learning outcomes have been realized in Indonesia. TIMSS has an assessment framework with three processes, namely knowing, applying, and reasoning. The average science skills of Indonesian students in the TIMSS study in 1999, 2003, 2007, and 2011 were 435, 420, 433, and 406, respectively (Ministry of Education and Culture, 2013a). Achievement of Indonesian students compared to other state students in the TIMSS study in 2011 showed that only 3% of Indonesian students reached high levels, 0% achieved advanced levels (compare: Singapore students 69% reached high levels, 40% achieved advanced levels) and 54% got low-level skills). The results show that the average Indonesian students could recognize several basic facts, communicate and associate various scientific topics and apply complex and abstract concepts (Ministry of Education and Culture, 2013). In the 2011 TIMSS study, Indonesia reached 3rd place from the bottom, only higher than Morocco and Ghana.

The results of the PISA study show things that are not much different from the results of the TIMSS study. PISA studies emphasize science literacy. The average scores of Indonesian students in the PISA study in 2000, 2003, 2006, 2009, and 2012 were 393, 395, 395, 383, and 382 respectively (Ministry of Education and Culture, 2013a). The results were below the average international score and reflected that Indonesian students’ scientific literacy was still very low (Ministry of Education and Culture, 2013). Moreover, they suggest that science and biology education in Indonesia is not satisfactory, because the average new Indonesian student can remember simple and basic facts and mastering problem-solving skills in everyday life is still low (Ministry of Education and Culture, 2013). The 2013 Curriculum stipulates that one of the Graduates Competency Standards (SKL) in junior high
school science subjects according to the Annex to the Regulation of the Minister of National Education Number 23 of 2006 dated May 23, 2006, is to show the ability to deal with problems that people face in their daily lives (Ministry of Education and Culture, 2013). Science process skills are one approach that must be used as a reference for teachers in carrying out the learning process designed in such a way that students can find facts, build concepts and theories with intellectual skills, and students’ scientific attitudes. The problem-solving skills intended here are science process skills.

2. METHODOLOGY

The study was done to determine whether learning devices for biological diversity could improve learning outcomes. It entailed developing a biological learning device with a problem-solving model, according to Polya (1973) and testing its ability to enhance learning outcomes and science processing skills among junior high school (SMP) students. Learning tools developed are Learning Implementation Plans (RPP), Teaching Materials, Student Activity Sheets (LKS), Learning Outcomes Assessment Sheets, and Assessment of Science Process Skills. The stages of developing learning devices (Pribadi, 2011) can be seen in Figure 1.

The tools were assessed by 3 validators before a small group of the primary research was conducted in the VII A class of SMPN 21 Banjarmasin. Data collection techniques used were observation, tests, and questionnaires. The data were analyzed through a descriptive and quantitative approach.

![Flow chart of learning device development](image)

Fig. 1. Flow chart of learning device development

The quality of Learning device (RPP, Teaching Materials, LKS, and Learning Outcomes Assessment) were reviewed by the validator to determine the feasibility of their use. RPP, Teaching Materials, and LKS are reviewed with instruments that have been developed. For the Learning Outcomes Assessment Sheet, content validation was carried out, and the language and question writing were per the instrument (Table 1). The information was taken through a descriptive analysis method.

<table>
<thead>
<tr>
<th>Score interval</th>
<th>Evaluation category</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 3.50</td>
<td>Very descent</td>
</tr>
<tr>
<td>3.00 ≤ 3.49</td>
<td>Descent</td>
</tr>
<tr>
<td>2.00 ≤ 2.99</td>
<td>Average</td>
</tr>
<tr>
<td>1.00 ≤ 1.99</td>
<td>Less</td>
</tr>
<tr>
<td>≤ 1.00</td>
<td>Low</td>
</tr>
</tbody>
</table>

Table 1. Criteria for categorizing Learning Implementation Plans (RPP) assessment, teaching materials, and Student Activity Sheets (LKS)

The level of readability is an interesting measure as it shows the learner’s comprehension of Teaching Material and LKS. The analysis technique was carried out in descriptive
quantitative percentages. Students are asked to give their opinions regarding the readability of Teaching Materials and LKS by filling in the Instruments.

The criteria for each learning phase are assessed by giving a checklist the implementation column (yes or no) and in the assessment column (4 = very good, 3 = good, 2 = good enough, 1 = not good). The data obtained were then analyzed descriptively quantitatively by percentage techniques. The percentage of implementation of the lesson plan uses criteria as listed in Table 2 and for the Implementation of the RPP as shown on Table 3. Moreover, student activity is measured by two observers using instruments and the data obtained then analyzed by quantitative descriptive.

Table 2. Criteria for categorizing Learning Implementation Plans (RPP) assessment

<table>
<thead>
<tr>
<th>No</th>
<th>Percentage</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0%–24%</td>
<td>Not implemented</td>
</tr>
<tr>
<td>2</td>
<td>25%–49%</td>
<td>Less implemented</td>
</tr>
<tr>
<td>3</td>
<td>50%–74%</td>
<td>Well implemented</td>
</tr>
<tr>
<td>4</td>
<td>75%–100%</td>
<td>Very well implemented</td>
</tr>
</tbody>
</table>

Table 3. Criteria for the implementation of the Learning Implementation Plans (RPP)

<table>
<thead>
<tr>
<th>No</th>
<th>Assessment average</th>
<th>Implementation</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.00–1.49</td>
<td></td>
<td>Less good</td>
</tr>
<tr>
<td>2</td>
<td>1.50–2.49</td>
<td></td>
<td>Enough good</td>
</tr>
<tr>
<td>3</td>
<td>2.50–3.49</td>
<td></td>
<td>Good</td>
</tr>
<tr>
<td>4</td>
<td>3.50–4.00</td>
<td></td>
<td>Very good</td>
</tr>
</tbody>
</table>

Based on the data from the science process skill test, a qualitative descriptive analysis was carried out from the student’s score. Analysis of students’ science process skills is done by giving students scores in answering essay test questions. Scoring is based on the scale of the science process, which is not skilled (1), less skilled (2), skilled (3), and highly skilled (4). Student questionnaire responses are used to find out the opinions of students on learning devices with the problem-solving model developed, the atmosphere of learning, and the way educators teach. Student responses were analyzed quantitatively by using percentages.

3. RESULTS

The results of the development of science-biology learning devices using problem-solving in the Polya model to improve learning outcomes and practice science process skills developed have been valid for use in learning. The RPP developed follows the flow of learning with the problem-solving syntax of the Polya model. The following are the results of his research:

3.1 Learning device validation

From Figure 2, it is evident that the average value was 3.89, showing that the validated RPP could be used in learning. The results of the Teaching Material Validation by the validator can be seen in Figure 3.
Based on the information presented in Figure 3, it is evident that the average value of 3.66, which is feasible. Therefore, the learning material that has been validated and can be used in learning. The Validation result of students’ LKS by validator can be seen in Figure 4.
Aminuddin Prahatama Putra et al: Learnind Devices for Biological Diversity: Examining the use of Troubleshooting to Improve Student Learning Outcomes

Fig. 4. Student Activity Sheets (LKS) validation result

From the results presented in Figure 4, the average value was 3.85 were, and it indicated that the validated worksheets could be used in classrooms. The results of the instrument validation of student learning outcomes by the validator are presented in Figures 5, 6, and 7 below.

Fig. 5. Result of knowledge learning outcomes instruments validation

Fig. 6. Validation result of skill learning outcomes instruments

Fig. 7. Validation result of learning science process skills
3.2 Limited test

The results of observations on the developed learning devices implementation revealed that they were practical and could be used in the teaching of biology. The observations were made by two biology science subject teachers, and the outcome is presented in Figure 8 below.

![Figure 8. Result of Learning Implementation Plans (RPP) implementation observation](image)

Teaching biology is a complex process because of a wide range of factors including the content (Bayrhuber, 2016; Fleischner et al., 2017; Liu & Beaujean, 2017; Ndeke, Okere, & Keraro, 2016). Furthermore, some students fail to relate the ideas being taught in class to the things that take place in the real world (Clancy, Nelson, Rutherford, & Hinde, 2014; Corwin, Graham, & Dolan, 2015; Haywood, Parrish, & Dolliver, 2016; Zogza, 2016). In other instances, the use of the wrong teaching methods may hinder students from learning biology concepts and acquire new knowledge (Lambert & Reiss, 2014). Therefore, it is upon the teacher to assess the situation and determine the best approach that can be used to improve learning outcomes (Khanova, Roth, Rodgers, & McLaughlin, 2015; Medina, Conway, Davis-Maxwell, & Webb, 2014; Tal, Lavie Alon, & Morag, 2014). In the current project, the observers were expected to determine the challenges that the students were facing when it comes to the content and concepts being taught in class.

In the preliminary stage, the observers noted that students faced challenges in ‘understanding’ the problem to be discussed. The problems were evident when the teacher tried to determine whether the students had comprehended the concepts being taught. For instance, the understanding of Apersepsi during the lesson was a challenge. Apersepsi is a typical type of South Kalimantan animals such as proboscis monkeys, anteaters, orangutans, parrots, and swamp buffaloes. Students struggled to understand the subject and determine how the animals were grouped in the same category. In such cases, the teachers had to help the students to make observations, see, read, and listen, and formulate questions/problems. Observation entailed taking students to the real world that has a lot of biodiversities, experiences of daily life, or bringing nature to class if possible. The goal is to enable students to see, hear, and touch various animals and plants that are difficult to obtain.

In the second phase of the problem-solving activity, the teacher guided students to form a hypothesis. The hypothesis must be very specific and limited to research because it will be tested for truth (Clément & Caravita, 2014; Gericke & Ottander, 2016; Lederman & Lederman, 2015, 2016; Rustaman, 2011). The role of the hypothesis is to guide researchers and ensure that the project remains on track (Arismendi & Penaluna, 2016; Pace, Fleischner, Weisberg, & Moline, 2017).

In the core activities of communicating the outcomes, students present the outcome of their group discussions alternately in front of the class (Farland, Franks, Barlow, Shaun Rowe, & Chisholm-Burns, 2015; Ghorbani, Karbalay-Doust, & Nooraishan, 2014; Remington, Hershock, Klein, Niemer, & Bleske, 2015). Appreciating how science works or more importantly mimicking how scientists work enables them to understand and share insights with their colleagues (Rustaman, 2011; Kimble, 2014; Mønsen et al., 2013; Prevost & Lemons, 2016; Singaravelu, 2013). Student activities during the learning process observed by two biology science subject teachers are presented in Figure 9.
Biological learning in the Concept of Conservation of Biodiversity places the teacher as facilitator and student as the subject of learning (Bleske et al., 2016; Frame et al., 2015; Rezaee & Mosalanejad, 2015). The trend is reflected in the activities of students who are dominant in following the learning process (Grünkorn, zu Belzen, & Krüger, 2014; Passmore, Gouvea, & Giere, 2014). Student activities related to the learning process include formulating problems, designing a problem solving, preparing tools and materials, carrying out a solution and then discussing it, checking the results obtained and answering some friends’ questions (Abakpa, Achor, & Odoh, 2016; Bierema, Schwarz, & Stoltzfus, 2017; Mathews, 2014; Pany, 2014; Radeloff et al., 2015). The number of activities can be reduced by giving students enough freedom or responsibility to carry out tasks and experiments and find their work (Holmqvist & Olander, 2017; Matthews, 2015; Subramaniam, 2014; van Mil, Postma, Boerwinkel, Klaassen, & Waarlo, 2016). While making the adjustments, the teacher must also provide positive reinforcement when the results are correct and negative reinforcement when answers are incorrect (Koo et al., 2016; Svenning et al., 2016).

In this study, the student’s responses after learning are presented in Figure 10 below. The results show that it is increasingly important to point out those concepts, models, teaching materials, and worksheets that are developed by educators. Besides, the intervention can improve most of the science process skills of students in learning science-biology through problem-solving. The positive response of these students is expected to provide hope for changes in the resolution of biology-science problems in more prudent ways. Therefore, the process is intended to improve the ability of students to realize, understand and master the series of forms of activities related to learning outcomes that have been achieved by students (Nur, 2011; Burgess, McGregor, & Mellis, 2014). Moreover, students need to reason to believe in what is presented before them, gather supporting information, and provide valid arguments.
4. DISCUSSION

Knowledge learning outcomes had individual completeness above 75%. The results indicate that the problem-solving model enabled students to remember, understand, apply, analyze, synthesize, and evaluate concepts, laws, and theories related to the subject of interest. Furthermore, all indicators were linked to high levels of completeness. The top three were indicators 4, 8, and 9 that were completed with an average score of about 75%. This is in accordance with Gagne’s opinion that students know how to solve the problem (process) as long as they develop a certain attitude (scientific attitude), and find the answer to the problem as a product (Ibrahim, 2003).

Learning activities with problem-solving, starting to formulate problems, design, and solve problems change students’ views on biology. The teachers should strive to make students view biology as an important and interesting subject through the use of problem-solving methods (Chen et al., 2018; Wiener, Plass, & Marz, 2009). In solving problems, students must understand a problem and have the desire to find a solution. Resolving the problem per the completion plan requires, among other things, the knowledge gained, concentration on the goal and one more important, and success (Bleske et al., 2016). Furthermore, it entails the examination of steps and results obtained by checking the truth.
of each statement (Balas & Momsen, 2014; Nyberg & Sanders, 2014). If students work following the plan, write a solution to the problem, and check each step of completion, they are likely to come up with a valid and correct solution (Muhsin, 2007).

Biology, as one of the fields of science, provides a variety of learning experiences to understand scientific concepts and processes. The skills include observation, submission of hypotheses, proper and correct use of tools and materials, and compliance with work classroom regulations (Remington et al., 2017; Wakabayashi, 2015). In other instances, biology learning entails asking questions, classifying and interpreting data, and communicating findings orally or in writing, exploring and sorting relevant factual information to test ideas or solve everyday problems (Pribadi, 2011). The results of learning science process investigations show that all students experienced an increase in ability, the greatest change being among those who were previously unskilled becoming skilled. The increase occurred because problem-solving models can be used to motivate students and encourage them to practice science process skills like the ability to draw conclusions that are trained through LKS (Boerwinkel, Swierstra, & Waarlo, 2014; Castéra & Clément, 2014; Clément, 2015). In other words, students are trained to make conclusions and are written on LKS.

Based on data from learning process science experiments, it is apparent that science process skills support other learning outcomes such as the ability to relate concepts to those in the real world. Nur (2011) stated that when students are actively involved in scientific inquiry, they use a variety of process skills, not just a single scientific method. The skills of the process are observation, classification, inferencing, forecasting, communicating, measuring, and interpreting data (Bleskeet al., 2014; Farland et al., 2015) Pribadi, 2011). Similarly, Rubba in Kurniati (2001) opined that science process skills are cognitive skills used by scientists as a systematic approach to solving problems. Therefore, they are central to the success of students in a science classroom.

5. CONCLUSION AND RECOMMENDATIONS

The data gathered in this study indicate that the biology science learning device with the problem-solving model was a valid, practical, and effective intervention that could be used to improve learning outcomes. Furthermore, it can be used to improve the student's science process skills. Therefore, it is a strategy that educators can use in science classrooms to impart the right skills for students and enable them to acquire the right knowledge.

Based on the results, three recommendations can be put forward to guide future research projects and enhance the teaching and learning of biology. First, some activities that have not been optimally implemented should be further enhanced in further testing. Second, there is a need to explore how teacher creativity, especially in directing students in formulating problems and making design completion can affect the outcomes of the experiments. Finally, there is a need to implement a problem-solving model on other concepts of biology.

REFERENCES

29. Khanova J, Roth MT, Rodgers JE, McLaughlin JE. Student experiences across multiple flipped courses in a single curriculum. Medical Education [Internet]. Wiley; 2015

65. Van MIL, MHW, POSTMA PA, BOERWINKEL DJ, KLAASSEN K, WAARLO AJ. Molecular Mechanistic Reasoning: Toward Bridging the Gap Between the Molecular and Cellular Levels in Life Science Education. *Science Education [Internet]*. Wiley; 2016 Mar 29;100(3):517–85. Available from: http://dx.doi.org/10.1002/sce.21215

