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Abstract 

Mesoporous, interlayer-free, hybrid carbon-silica matrices and membranes based on 

tetraethoxysilane (TEOS), organosilica of triethoxyvinylsilane (TEVS) and pluronic triblock 

copolymer poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (P123) were 

successfully prepared using an acid-base catalysed sol-gel method for desalination applications. 

These membranes were carbonized to form the hybrid carbon-silica structures under inert 

conditions in vacuum and nitrogen. The effects of calcination conditions on the structure-property 

relationship of the carbon-silica xerogels were elucidated, and the membrane performances were 

systematically studied using brackish (1 wt%) to brine (15 wt %) feed concentrations of sodium 

chloride solution and feed temperatures (25 – 60 °C) under pervaporation process. Vacuum calcined 

(CS-Vc) membrane produced a slightly more mesoporous matrix and higher carbon yield than the 

nitrogen calcined (CS-N2) membrane, and hence, led to comparatively superior desalination 

performance. CS-Vc membranes produced high water fluxes of 26.5 (1 wt%, 60 °C) and 9.2 (15 

wt%, 60 °C) L m
-2

 h
-1

 with salt rejections of 99.5% and 98.6%, respectively. This study 

demonstrates that the combined strategy of hybrid organosilica with polymeric template and 



 

 2 

vacuum calcination offered the carbonized silica mesostructure membranes with excellent 

separation of water from the hydrated salt ions, and importantly, high water fluxes particularly for 

processing brine salt solutions.  

 

Keywords: Interlayer-free; desalination; carbon-silica membrane; carbonizing templates; brine 

concentration. 

 

1. Introduction 

Access to potable water is one of the major global problems facing our current society. Coupled 

with population explosion and industrial development, the demand for fresh water is concerning, 

especially in developing countries [1]. To address this critical concern of water scarcity, desalination 

technologies have attracted the attention of researchers with promising potential outcomes [2]. 

Reverse osmosis (RO) has undergone major development and improvements for the last 3 decades, 

and currently it is the dominant desalination technology. RO requires high pressure to overcome the 

seawater osmotic pressure (~ 25 bar), thus operating at pressures as high as 80 bar [3]. The 

commercially available polymeric RO membranes for desalting seawater are now delivering water 

fluxes in the range from 14.7 to 28 L m
-2

 h
-1

 [4], though RO membranes are prone to biofouling and 

regenerative instability [5]. Comparative studies of ceramic and polymeric membranes have shown 

that ceramics foul less than polymers regardless of the chemistry of the membrane [6]. Therefore, 

recent progress in inorganic membrane desalination research has shown improvement in 

performance. 

 

The pore size of porous inorganic membranes for seawater desalination is very small, generally in 

region of 5Å, thus making them very difficult to operate in a RO configuration due to extremely 

high pressures needed to drive water molecules through these ultra-micropores. Hence, inorganic 

membranes have been reported to operate mainly in pervaporation (PV) set up, which is a subset of 

membrane distillation (MD). PV does not require the feed to be pressurized, a major advantage for 

RO processes. However, MD and PV require energy to condense the water vapor that permeates 

through the membrane. PV is driven by a vapor pressure process, thus requiring that the feed vapor 

pressure to be higher than the permeate vapor pressure. As the vapor pressure is a function of the 

temperature, water vapor diffuses through the membranes by simply maintaining the feed 



 

 3 

temperature higher than the permeate temperature. There are three most common operation 

configurations for MD or PV set ups for desalination based on (i) vacuum, (ii) air gap, and (iii) 

sweep flow [7]. 

Initial PV inorganic membranes based on zeolites [8, 9] and microporous derived silica [10] 

delivered high salt rejection though water fluxes were very low, offering below 1 L m
-2

 h
-1

 for 

processing 3.5 wt% NaCl solutions. These initial results from a decade ago showed that water 

fluxes of PV inorganic membranes were very low and uncompetitive against RO membranes, and 

even against MD polymeric membranes as shown in Table 1. A note of caution must be observed 

when comparing different membranes tested in different set ups and under different conditions. 

Nevertheless, Table 1 provides a yard stick to compare the performance of different membranes and 

the evolution of membrane performance for similar MD/PV organic and inorganic membranes. 

Recent results show that PV inorganic membranes undergone major improvements, as water fluxes 

are now reaching values as high as below 25 L m
-2

 h
-1

 (NaCl 3.5 wt%). These results clearly show 

that PV inorganic membranes closed the performance gap as compared with PV organic membranes, 

with performances now in the same range as commercial RO membranes. It is interesting to observe 

that the number of inorganic materials used for membrane preparation is expanding ranging from 

crystalline (i.e. zeolites), to amorphous (i.e. silica), doped silica (i.e. metal oxides and carbonized 

templates), hybrid silica (i.e. organic link), titania and mixed matrix (i.e. carbon alumina). 

 

Table 1 – MD/PV organic and inorganic membranes for desalting water. 

Membrane Feed temp.  

(
o
C) 

Salt conc.  

(wt%) 

Water flux 

(L m
-2

 h
-1

) 

Salt Rej. 

(%) 

Ref. 

Polypropylene 53 3.5 5.2  [11] 

PVDF - polyvinylidene fluoride 53 3.5 12.0 99.9 [12] 

PTFE - polytetra fluoroethylene 60 3.5 30.0 99.9 [13] 

Zeolite MFI-S1 75 3.5 4.1 99 [14] 

Zeolite NaA 113 3.5 4.2 99.9 [15] 

Titania 75 3.5 7.0 99.1 [16] 

Nickel oxide silica 60 0.3 7.0 93.0 [17] 

Carbonised P123 silica 60 3.5 8.0 99.9 [18] 
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Mesoporous hybrid silica 60 3.5 11.0 99.9 [19] 

Mesoporous Cobalt Oxide Silica 60 3.5 25.8 96.0 [20] 

Carbon alumina mixed matrix 75 3.5 

 

25.0 93.0 [21] 

 

Initial work reported on silica membranes included the formation of microporous structures by 

carbonizing ionic surfactants embedded in silica matrices, where water fluxes improved from 1.6 to 

2.2 L m
-2

 h
-1

 (3.5 wt% and 25 °C) as the carbon chain increased from 6 (C6) to 16 (C16) [10]. These 

water fluxes were very low, and many of the recent performance improvements of silica based 

membranes were realized by the formation of mesoporous structures. This has been achieved by 

using triblock copolymer Pluronic F127 [22] or F68 templates or [23], or co-assembling Pluronic 

F68 template with organo-bridged silica precursors such as 1, 2-bis (triethoxysilyl) ethane (BTESE) 

[19]. Mesoporous structures allow for an increase in the total pore volume through the membrane 

matrix, thus reducing resistance to the diffusion of water vapors and increasing water fluxes.  

 

A very recent approach reported in the literature is the preparation of interlayer-free membranes, a 

departure from the conventional method of preparing silica derived membranes which required very 

smooth surfaces (i.e. like interlayers) on macroporous substrates to avoid silica film cracking or 

pin-holing, thus rendering silica membranes ineffective for separation processes. This recent 

achievement of interlayer-free silica derived membranes has been attributed to change of the silica 

precursors and silica sol-gel synthesis. Examples of interlayer-free mesoporous membranes tested 

for desalination include cobalt oxide silica calcined in air [20], and carbonized non-ionic pluronic 

triblock copolymer (P123) silica calcined in inert vacuum pressure [18]. The advantage of 

interlayer-free membranes is the reduction of the overall membrane thickness, likewise reducing the 

resistance to water vapour diffusion.  

 

In order to further explore the interlayer-free and mesoporous silica derived membranes, in this 

work we report for the first time a preparation method containing the carbonization of ligand and 

non-ligand templates. To this end, we used triethoxyvinylsilane (TEVS) which contains a vinyl 

group as a ligand pendant of silica. TEVS has been previously used to prepare microporous silica 

membrane on interlayered porous substrates [24]. Further, the ligand methyl pendant groups of 
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silica have been previously demonstrated to deliver high quality microporous silica membranes [25, 

26]. To achieve mesoporosity, we incorporated TEVS with another silica precursor using tetraethyl 

orthosilicate (TEOS), and added a non-ligand triblock copolymer P123 template. Then, we used a 

base-catalyzed sol-gel synthesis which allowed deposition of sols directly onto porous substrates 

without the need of interlayers [27].  

 

In this work, our method differs from those listed in Table 1, where non-ligand surfactants were 

embedded into the silica matrix followed by carbonization. We demonstrate that high quality carbon 

derived membranes can be prepared by using both ligand and non-ligand templates together with 

the co-polymerisation reaction of two different silica precursors where TEOS has no templates 

whilst TEVS has a ligand template based on a vinyl group. The resultant xerogels and silica derived 

membranes were calcined under vacuum or N2 atmosphere conditions to carbonise the carbon 

template groups (vinyl ligand group and the P123), and characterized via FTIR, TGA, SEM and N2 

adsorption-desorption. The performance of the interlayer-free carbonised mesoporous silica 

membranes was evaluated systematically using a series of testing conditions, including feed salt 

(NaCl) concentrations from 1 to 15 wt% at varying temperatures from 25 to 60 °C via a 

pervaporative process. 

 

2. Experimental  

2.1 Material and membrane synthesis 

Hybrid silica sol were synthesized by acid-base sol-gel method using TEOS (99.0%, GC, 

Sigma-Aldrich), P123 ((EO) 20(PO) 70(EO) 20, Sigma Aldrich), TEVS (97.0%, Sigma-Aldrich), 

ethanol (EtOH), dilute nitric acid (0.0008 M HNO3, Merck), ammonia (NH3, 25%, Merck) and 

deionized water. The preparation of hybrid silica sol was performed in a sequential two-step sol-gel 

process as described in a recent work. Firstly, TEVS and TEOS were added drop-wise into ethanol, 

stirred at 0 °C for 5 min followed by the addition of HNO3. Then the solution was stirred and 

refluxed for 1 h at 50 °C. In the second step, base-catalysed polycondensation was carried out by 

adding ethanol-diluted NH3 and stirred for another 2 h. P123 was then added and further stirred at 

room temperature for 45 min to obtain the resultant sol. The final sol pH was measured to be 

approximately 6 ± 0.1, which is considered to be basic because it is above the isoelectric point of 

the silica (1-3) [28-31]. The final molar ratios of the TEVS: TEOS: EtOH: HNO3: H2O: NH3 
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mixture sols was 0.1: 0.9: 38: 0.0008: 5: 0.003 whilst the concentration of P123 was kept at 50 wt% 

based on the SiO2 theoretical yield.  

 

The as-synthesized sol was first mixed with ethanol in 1:0.9 to reduce the sol viscosity prior to 

dip-coating substrates. Thin films were coated directly on the macroporous α-Al2O3 tubular 

substrates (φ≈100 nm) (Ceramic Oxide Fabricates, Australia) with a dwell time of 2 min and a 

dipping and withdrawal rate of 10 and 5 cm min
-1

, respectively. After the deposition of each layer, 

the coated tube was dried briefly in an oven and then calcined in N2 or vacuum at 450 °C for 4 h 

with 1 °C min
-1

 ramping and cooling rates in a tubular furnace. The cycle of dip-coating, drying and 

calcinations was repeated three times to obtain high quality hybrid silica membranes. The hybrid 

carbon silica membranes are denoted as CS-N2 (N2 calcination) and CS-Vc (Vacuum calcination). 

The equivalent bulk xerogel samples were also synthesized for material characterization. The bulk 

xerogels were dried at 60 °C for 24 h to obtain the dried gel which was grounded into powder and 

then calcined emulating the same heating treatment as the membranes.   

 

The membrane morphology was characterized by field emission scanning electron microscopy 

(FESEM JOEL 7001). The xerogel was characterized by using a Shimadzu IRAffinity-1 

Fourier-transform infrared spectrometer with a Pike MIRacle attenuated total reflectance accessory 

(ATR-FTIR) at wavelength range 400-4000 /cm, for a total of 30 scans. Nitrogen adsorption 

analysis was performed at 77 K and 1 bar using Micromeritic TriStar 3000 instrument to determine 

the structural parameters of the carbonized xerogels. Samples were degassed under vacuum for ＞ 

6h at 200 °C prior to measurement. Thermogravimetric analysis (TGA) was performed using a 

differential scanning calorimeter / thermogravimetric analyser (Mettler-Toledo, TGA/DSC 1) from 

30 °C to 800 °C using 5 °C min
-1

 in air and/or nitrogen atmosphere. 

 

2.2 Desalination Tests 

Desalination tests were carried out using a thermally based pervaporation process as displayed in 

Fig. 1. Briefly, a dead-end system was employed, where one end of the membrane tube was blocked 

whilst the other end was connected to a vacuum pump (1.5 kPa) via a cold trap to collect the 

permeate water. The membrane tube was immersed in the feed tank containing sodium chloride 

(NaCl, Sigma Aldrich) solutions with concentrations varying from 0 to 15 wt% at a controlled 
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temperature of 25, 40 and 60 °C. The feed solution was recirculated via a peristaltic pump and 

constantly stirred in a biker to minimize salt concentration polarization on the membrane surface. 

The water vapor in the permeate stream was collected in the liquid nitrogen cold trap at 

pre-determined intervals. 

 

Fig. 1. Schematic of the pervaporation set-up for membrane desalination. 

 

The water flux (F) was determined based on the Eq. 1: 

      
tA

m
F


                                     (1) 

where m is the mass of the permeate (L) retained in the cold trap; A is the surface-active area (m
2
) 

and t is the time measurement (h). The salt rejection, R (%) was obtained by Eq. (2),  

 
100%

f p

f

C C
R

C


                         (2) 

where Cf and Cp are the feed and permeate concentrations of salt (wt%), respectively. The salt 

concentrations were determined by using a conductivity meter (labCHEM CP) based on a 

pre-determined standard curve of salt concentrations vs conductivity. To ensure a steady water flux 

and rejection, at least 3 permeate collections were taken at steady state conditions. 

 

3. Results and discussion 

The FTIR spectra of the xerogels calcined at 450 °C in Fig. 2 show very similar vibrational bands in 

the region of 1400 ‒ 700 cm
−1

 for both CS-N2 and CS-Vc samples irrespective of the calcination 

atmosphere. Bands near 800, 1060, 1220 cm
-1

 correspond to the stretching modes of siloxane 

bridges (Si-O-Si) whilst a shoulder 960 cm
-1

 was assigned to the silanol groups (Si-OH) [32-34]. 

These vibration bands are generally found in calcined silica xerogels and represent the final stages 
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of the sol-gel synthesis leading to hydrolyses reaction due to formation of silanol groups and 

condensation reactions as evidenced by the formation of siloxane bridges. 

 

Fig. 2. FTIR spectra of CS-N2 and CS-Vc xerogels calcined at 450 °C. 

 

The structural properties of the carbonized xerogels were studied by N2 adsorption-desorption 

technique. Fig. 3a shows that the isotherms of both samples are type IV, a characteristic of a 

mesoporous material. The isotherms show a strong uptake of nitrogen adsorption for relative 

pressures p/p0 < 0.2, a region dominated by microporous structures. The increase in nitrogen uptake 

clearly indicates the formation of mesoporous structures, which is further evidenced by the 

hysteresis starting at p/p0 ~0.5. Fig. 3b shows the pore size distributions of the both samples based 

on the BJH method for the desorption branch of the nitrogen isotherms in Fig. 3a. Both samples 

share similar features of a bimodal pore size distribution in the mesoporous region. The first cluster 

of peaks appears at 3.9 nm, and it is slightly broader for the CS-N2 sample. The second distinct peak 

is broad peaking at 6.5 nm for the CS-N2 sample and at 7.5 nm for the CS-Vc sample. The CS-N2 

sample slightly increased its pore size after 14 nm, whilst that of the CS-Vc sample decreased. The 

inset of Fig. 3b shows the pore size distribution based on the BJH method for adsorption branch 

which was measured at lower relative partial pressures. The inset shows that the micropores (dp < 2 

nm) for the CS-Vc sample increased whilst the CS-N2 decreased. 
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Fig. 3. CS-Vc and CS-N2 xerogels calcined at 450 °C (a) N2 isotherms closed symbols 

(adsorption) and open symbols (desorption), and (b) pore size distributions and the inset image 

shows the average pore diameter in the region of 1.5 and 2.5 nm. 

 

The small structural variations of both samples related to BET surface areas, total pore volumes and 

average pore diameters are summarized in Table 2. It is interesting to observe the large surface areas 

of 761 m
2
 g

-1
 achieved by the synthesis and carbonization method in this work. These surface areas 

are similar to those reported by Fahrenholtz et al. [35] for silica membranes prepared with methyl 

pendant ligand groups, though ~25% lower than carbonized P123 TEOS xerogels reported by Elma 

and co-workers [18]. However, the total pore volumes in this work are at least one order of 

magnitude higher than those reported by Wei et al. [24] for TEVS-TEOS xerogels. Therefore, the 

carbonization of both vinyl pendant ligand groups together with the non-ligand P123 opposed 

structural densification contrary to previous reported work for TEVS-TEOS derived xerogels. 

 

Table 2. Surface properties of carbon-silica xerogels calcined in N2 and vacuum at 450 °C 

Sample 

Code 

SBET 

(m
2
/g) 

Pore volume 

(cm
3
/g) 

CS-N2 

CS-Vc 

754 

761 

0.546 

0.615 



 

 10 

 

Although the membranes prepared in this work were carbonized up to 450 °C, TGA analyses were 

carried out up to 800 °C to understand the components made up of the carbon-silica matrix. It is 

envisaged that calcination of P123-incorporated TEVS:TEOS sol-gel material using nitrogen or 

vacuum will lead to the carbonization of the organic components from P123 block copolymer and 

the TEVS vinyl moiety. Starting with the carbonized xerogel samples tested in the TGA under N2 

atmosphere (Fig. 4a) and in air (Fig. 4b), there are three distinct regions of mass loss. In the first 

region, the mass decreases rapidly between 30 – 100 °C due to the elimination of the physisorbed 

water in both samples. This is common as silica is hydrophilic and readily adsorbs water molecules 

via hydrogen bonding with the OH groups of the silanol species [36, 37], which remain in the 

carbon-silica matrix as observed in the FTIR spectrum in Fig. 2. However, carbon should impart 

some degree of hydrophobicity, as water adsorption on carbon surface has very low surface 

coverage via cluster aggregation [38] onto the carbon defects or functional groups [39]. 

Nevertheless, the carbon-silica xerogels in this work similar to that of carbonized surfactant silica 

xerogels reported by Duke and wo-workers [40], and this effect is mainly attributed to the 

hydrophilic silica rather than the hydrophobic carbon.  

 

It is interesting to observe that the samples calcined under vacuum (CS-Vc) adsorbed less water (3.5 

wt%) as compared with the sample calcined in an inert atmosphere (CS-N2) which shows a higher 

amount of 9.5 wt% in both Fig. 4a and 4b. These results can be explained by the fact that the 

vacuum calcination maintained a higher mass of organic carbon in the carbon-silica matrix than the 

inert N2 atmosphere calcination, given that both samples contain the same molar ratio of the organic 

components (P123 and vinyl groups). This can be clearly seen in the second mass loss stage in Fig. 

4a, which shows a mass loss difference of ~0.6% between the CS-Vc and CS-N2 for the temperature 

range of 100 – 450 °C. In the third stage (>450 °C), the CS-Vc samples showed a higher mass loss 

as compared to a smaller mass variation in the CS-N2 samples, thus clearly indicating that the 

residual organic groups arising from the pendant ligand vinyl groups or the non-ligand P123 

templates remained in the matrix up to 450 °C. This can be further observed in Fig. 4b, when the 

carbon-silica samples were tested in an oxidized atmosphere using air, as the CS-Vc mass loss in 

the second stage started at lower temperatures of 380 °C. This is due to the earlier onset of thermal 

and oxidative degradation associated with these functional groups in air compared to N2 atmosphere 
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[41]. The loss of these functional groups thus explain the reasons for the CS-Vc and CS-N2 samples 

having different affinities to water. 

 

In order to further understand the mass loss behaviour of the P123-TEVS:TEOS derived xerogels, 

TGA analysis was carried out in air for samples prepared without the TEVS. Fig. 4c shows the mass 

loss of carbonized P123-TEOS xerogel, and again the trend related to the vacuum calcination 

retained a higher amount of carbon mass in the second stage is maintained. However, a faster mass 

loss is observed for the xerogel calcined in vacuum from 100 °C onwards, whereas the mass loss 

profile of nitrogen treated xerogel appears to be similar to those of the corresponding xerogels in 

Fig 4a and 4b (black lines). Therefore, this shows that the effect of calcination environments is 

significant on the thermal behaviours of the P123-TEOS samples, despite both vacuum and nitrogen 

treatments are considered inert. In the absence of the vinyl groups (Fig 4c), vacuum calcined 

P123-TEOS sample led to a steady loss of the volatile organic species between 100 and 600 °C, 

which suggests that degradation of the P123 into smaller fragments continuously occurs over this 

temperature. On the other hand, when the vinyl groups are present, there is a delay in the 

degradation process which starts at approximately 450 °C for the CS-Vc sample in vacuum (Fig. 4a) 

and 300 °C in air (Fig 4b). It is possible that the hydrophobic vinyl groups of the TEVS may 

associate with the hydrophobic PPO blocks of the P123, which led to a delayed onset of degradation 

as a result of a stabilization effect. Such hydrophobic-hydrophobic interaction between TEVS and 

P123 is often described for the preparation of templated mesoporous ordered silica in the literature 

[42-44].  

 

In contrast, all the nitrogen calcined samples have very similar mass loss profile suggests that the 

organic components in the gel matrix had been carbonized to some extent giving rise to the 

properties of a carbonaceous material. Hence, the removal of the organic fragment between 100 and 

400 °C accounts for only 1% (Fig 4c). Interesting, the masses of both samples crossed over at 

~400 °C contrary to the samples containing TEVS in Figs. 4a and 4b. This result suggests that the 

vinyl pendant ligand group was less affected by the carbonization under the vacuum conditions. 
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Fig. 4. TG mass loss curves of CS-Vc and CS-N2 samples as a function of temperature exposed 

to (a) N2 flow, (b) air and (c) carbon-silica samples (P123-TEOS) in air. 

 

Fig. 5 shows the SEM images of the prepared membranes. It is observed that there is no clear 

boundary between the α-Al2O3 tubular supports and the carbon silica films in both membranes. The 

top layers are characterized by rough surfaces, where alumina particles are clearly observed, though 

full coverage was achieved as pores, pin holes and micro-crack defects were not observed. In fact, 

the carbon silica film penetrated into the pores of the alumina substrate, similar to these recent 

reports [20, 27] on the preparation of interlayer-free silica membranes. This is attributed to the 

contact between a dry porous surface (alumina substrate) and liquid (sol), which induces wetting 

forces similar to capillary forces, and modulated by surface liquid tension [45] until equilibrium is 

reached where no further sol infiltration takes place [46]. Upon dip-coating, the sol fills up the 

macropores of the substrate between the voids of the α-Al2O3 particles which forms a rigid structure 

upon drying and carbonization at 400 °C. The top surface images for the carbon silica membranes 

prepared under vacuum and in N2 atmosphere show similar good surface coverages. 
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Fig. 5. SEM images of the (a, c) cross-section and (b, d) top surface of (a,b) CS-N2 and (c, d) CS-Vc 

membranes. 

 

Figure 6 displays water fluxes and salt rejection values of both membranes as a function of feed 

temperatures and salt concentrations. There are three important trends related to the performance of 

the membranes. The first trend is associated with water fluxes decreasing as a function of the feed 

salt concentrations. This effect is attributed to the affinity of the silica surface to retain hydrated 

ions as reported by de Lint et al. [47]. As hydrated salt ions such as Cl
-
˗H2O (6.64 Å) and Na

+
˗H2O 

(7.16 Å) [48, 49] are much larger than the kinetic diameter of water (2.6 Å), and as salt rejection is 

high and in excess of 98%, the retention of larger hydrated ions may cause pore blockage of the 

carbon-silica films, particularly the pores sizes below 7.16 Å, thus reducing the ability of the 

smaller water molecules to diffuse through the membrane. However, the reduction of water fluxes 

of 49% (CS-Vc) and 29% (CS-N2) with increasing feed salt concentration from sea water (3.5 wt%) 

to brine (15 wt%) at room temperature is not as severe as a 77% flux reduction reported for pure 

silica membranes [50]. These results further support the beneficial effect of carbon structures in PV 

desalination, where the effect of hydrated ion retention on the membrane surface is greatly reduced 

for carbonized P123 silica [18] or negligible for carbon [21] membranes. 

 

The second trend is related to the water fluxes consistently increased as a function of temperature 

for both membranes. For instance, the water fluxes measured at 25, 40 and 60 °C at 3.5 wt% feed 
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salt concentration for the CS-Vc membrane increased in a sequential manner from 9.5 to 11.3 and 

19.8 L m
-2

 h
-1

. As PV is driven by vapour pressure difference, raising the feed temperature leads to 

higher vapour pressure in the feed side of the membrane, thus increasing water fluxes. It is also 

noteworthy that the CS-Vc membrane produced a very high water flux of 26.5 L m
-2

 h
-1

 with 

excellent salt rejection of 99.5% for processing brackish water (1 wt% NaCl) at 60 °C. Similarly, 

the same membrane delivered 9.2 L m
-2

 h
-1 

for processing brine waters (15 wt%) at 60 °C, and 

reaching 98.4% of salt rejection. Processing brine wastes containing 15 wt% NaCl requires 

overcoming osmotic pressures of 139 bar [51] at 25 °C, plus extra hydraulic pressure to drive water 

molecules through the RO membranes. These pressure requirements are beyond the reach of 

engineering RO systems, whilst the PV carbon-silica membranes in this work demonstrate they 

were able to handle these high salt concentrations very well. Further, the membranes in this work 

are generating high water fluxes in the top range of PV polymeric and inorganic membranes as 

compared to performance results listed in Table 1.  

 

A third and interesting trend is that the CS-Vc membranes generally delivered high water fluxes 

than the CS-N2 membranes for pure water permeation (outside the experimental error ± 8%) and 

slightly higher for processing saline waters. The salt rejections of the membranes were also very 

similar, though slightly higher for the CS-Vc membranes. These results strongly suggest that the 

vacuum calcination method delivered superior structural formation of the carbon-silica membranes 

than the N2 atmosphere calcination method. The superior water fluxes of the CS-Vc membrane are 

attributed to the increase total pore volume of the CS-Vc xerogels as observed in Fig. 3 and Table 2. 

In other words, the CS-Vc membranes undergone lower matrix densification than the CS-N2 

membranes, which reduces the resistance to water diffusion, thus explaining the improved water 

fluxes.  

 

Another interesting point associated with the vacuum calcination method is that the CS-Vc 

materials were more hydrophobic due to the higher amount of carbon retained in the carbon-silica 

matrix as ascertained by TGA analysis (Fig. 4). Hydrophobic microporous polymeric materials are 

generally preferred in MD membranes to avoid pore wetting [52-54]. In the case of hydrophobic 

materials, there is less water adsorption occurring on the surface of the CS-Vc membrane, and in 

this case water vapour diffusion through micro and mesopores proceeded at faster rate than the 
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slower surface diffusion. Therefore, the combined effect of higher pore volumes and higher degree 

of hydrophobicity as compared to the membranes calcined in N2 atmosphere explains the superior 

performance of the CS-Vc membranes. 

 

The carbon silica membranes derived from P123/TEVS/TEOS in this work delivered water fluxes 

248% higher than the P123/TEOS membranes at 3.5 wt% and 60 °C reported by Elma et al. [18]. 

As both membranes were interlayer-free and prepared on the same type of alumina substrates, this 

significant improvement is associated with the role played by the TEVS precusor. Of particular 

attention, the potential hydrophobic to hydrophobic interactions of the vinyl pendant ligand group in 

TEVS to the PPO blocks in P123 copolymer conferred the final carbon silica matrix with superior 

structural domains. In addition, the P123/TEVS/TEOS proved to have a superior integration into the 

inter-particle void of the porous alumina substrate where previous P123/TEOS derived membranes 

failed when carbonized in N2 inert atmosphere [18]. 

 

Fig. 6. Desalination performance of (a) CS-N2 and (b) CS-Vc membranes as a function of feed salt 

concentrations at feed temperatures of 25 °C (),40 °C () and 60 °C (). Water flux (± 8%) (full 

line ▬▬) and NaCl rejection (± 1%) (broken line -----). 

 

Finally, the performance of the CS membranes in this work to process brines are noteworthy. There 

has been a number of recent publications using MD polymeric membranes for processing RO brines 

or coal seam gas water brines. PTFE membranes reached 10 L m
-2

 h
-1

 (at 35 °C and 5 wt% brine) 

[55] and 5 L m
-2

 h
-1

 (at 85 °C and 12 wt%) [56] while PVDF membranes delivered 9.5-10.8 L m
-2
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h
-1

 (65 °C and ~7.5 wt%) [57]. These values are below the performance of the CS-Vc membrane 

which processed even highly concentrated brines of 15wt% and produced 9.2 L m
-2

 h
-1

 at 60 °C. 

The CS membranes also performed well for processing seawater concentrations of 3.5wt% at 60 °C 

and delivering fluxes of up to 19.3 L m
-2

 h
-1

. This water flux is 75% and 119% higher than the 

carbonized template [18] or hybrid silica [19] membranes in Table 1, respectively. However, 

mesoporous cobalt oxide silica [20], carbon alumina mixed matrix [21] PV polymeric membranes 

[13] showed higher fluxes from 25 to 30 L m
-2

 h
-1

. 

 

4. Conclusions 

In this work, interlayer-free hybrid carbon-silica membranes were prepared by templating and 

carbonizing pluronic triblock copolymer (P123) and vinyl pendant ligand in TEVS in a sol-gel 

synthesis also containing TEOS as a second silica precursor. Both vacuum and N2 calcined samples 

showed mesoporous properties with high pore volume, but vacuum calcined sample (CS-Vc) 

produced more carbon structures within the final matrix so that a membrane with better desalination 

performance was prepared. CS-Vc membranes produced water fluxes of 26.5 (1 wt%, 60 °C) and 

9.2 (15 wt%, 60 °C) L m
-2

 h
-1

 with salt rejections of 99.5% and 98.6%, respectively, much higher 

than the previously reported state-of-the-art for processing brines. Therefore, interlayer-free 

mesoporous carbon-silica membranes prepared with hybrid TEVS and TEOS with P123 template is 

a promising potential route for preparing high performance inorganic membranes for pervaporative 

desalination with capabilities to process a range of salt concentration from brackish to brine waters. 
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Highlights 

 Interlayer-free carbon-silica matrices carbonized under vacuum and N2 atmosphere 

 Pendant ligand vinyl group and triblock copolymer embedded in the silica matrix 

 Higher mesoporosity and carbon yield via vacuum as compared to N2 carbonization  

 High water flux of 26.5 Lm
-2

h
-1

 for brackish feed with 99.5% salt rejection 

 Also high water flux of 9.2 Lm
-2

h
-1

 for brine (15 wt%) feed with 98.6% salt rejection  
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